

February 2006

NASA/CR-2006-213952

ADGS-2100 Adaptive Display and Guidance
System Window Manager Analysis

Mike W. Whalen, John D. Innis, Steven P. Miller, and Lucas G. Wagner
Rockwell Collins, Inc., Cedar Rapids, Iowa

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Cooperative Agreement NCC-1-01001

February 2006

NASA/CR-2006-213952

ADGS-2100 Adaptive Display and Guidance
System Window Manager Analysis

Mike W. Whalen, John D. Innis, Steven P. Miller, and Lucas G. Wagner
Rockwell Collins, Inc., Cedar Rapids, Iowa

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

ADGS-2100 Adaptive Display & Guidance System
Window Manager Analysis

Michael W. Whalen

John D. Innis
Steven P. Miller
Lucas G. Wagner

Advanced Technology Center

Rockwell Collins, Inc.,
400 Collins Road NE,

Cedar Rapids, IA 52498 USA

November 30, 2005

Abstract
Recent advances in modeling languages have made it feasible to formally specify and
analyze the behavior of large system components. Synchronous data flow languages,
such as Lustre, SCR, and RSML-e are particularly well suited to this task, and commercial
versions of these tools such as SCADE and Simulink are growing in popularity among
designers of safety critical systems, largely due to their ability to automatically generate
code from the models. At the same time, advances in formal analysis tools have made it
practical to formally verify important properties of these models to ensure that design
defects are identified and corrected early in the lifecycle. This report describes how these
tools have been applied to the ADGS-2100 Adaptive Display and Guidance Window
Manager being developed by Rockwell Collins Inc. The Window Manager acts as
“switchboard” between display applications and physical displays. It is also responsible
for ensuring that critical information is displayed to pilots even in the presence of
application and hardware failures.

In this effort, the majority of the functional behavior of the window manager, with over
16,000 primitive Simulink blocks organized into over 4,000 subsystem instances, was
verified against the high-level requirements expressed as 563 temporal logic properties.
As a result, 98 errors in the high-level requirements and Simulink models were found and
corrected. This work demonstrates how formal methods can be easily and cost-
efficiently used to remove defects early in the design cycle.

 ii

 iii

Table of Contents
1. Introduction 1

2. Background 2

2.1. Overview of the Window Manager Application 2

2.2. Modeling and Verification Tools 4
2.2.1. Simulink..4
2.2.2. SCADE ...4
2.2.3. Reactis...5
2.2.4. NuSMV...5
2.2.5. PVS ...5
2.2.6. SAL...6

2.3. Translation of Simulink into Analysis Tools 6

3. Analyzing a Large Software Model 8

3.1. Formal Model of a Toy Window Manager 9

3.2. Creating Analysis Partitions 10
3.2.1. Group Related Requirements..10
3.2.2. Decompose Model into Analysis Subsystems ..11
3.2.3. Formalizing Safety Requirements into Properties13
3.2.4. Factoring System-Level Properties...15
3.2.5. Determine System Invariants on Subsystem Inputs................................17

3.3. Reducing State: Scaling, Abstraction, and Refactoring 17
3.3.1. Replacing Reals with Integers ..17
3.3.2. Scaling Integer Ranges ...18
3.3.3. Refactoring Simulink Models ...18

3.4. Analyzing Subsystems 19
3.4.1. Running RCI/UMN Translators and NuSMV ..20
3.4.2. Interpreting Counterexamples...20
3.4.3. Fixing a Problem Identified by a Counterexample20
3.4.4. Example: The CURSOR_PLACEMENT Subsystem.............................21

4. Analysis Results on the WM Model 25

4.1. Scope of the Effort 26

4.2. Information Collected 26

4.3. Analysis Process 27

4.4. Causes of Errors Found 29

5. Conclusions and Directions for Future Work 30

References 31

 iv

 1

1. Introduction
Recent advances in modeling languages have made it feasible to formally specify and
analyze the behavior of large system components. Synchronous data flow languages,
such as Esterel [2], Lustre [3], [16], SCR [18], and RSML-e [36] are particularly well
suited to this task, and commercial versions of these tools such as SCADE [12] and
Simulink [10] are growing in popularity among designers of safety critical systems,
largely due to their ability to automatically generate code from the models. At the same
time, advances in formal analysis tools have made it practical to formally verify
important properties of these models to ensure that design defects are identified and
corrected early in the lifecycle [4], [5], [6], [20], [34], [35].

Rockwell Collins is currently designing heads-down and heads-up displays and display
management software for next-generation commercial aircraft. An important part of this
system is ensuring that data from different displays applications is routed to the correct
display, and that critical applications are displayed even in the event of display or
computing resource failures. The Window Manager (WM) is responsible for this
“switchboard” functionality, routing applications to displays in a flexible way and
handling reversion in the case of component failures.

In this report, we describe what we believe is the first successful integration of formal
analysis into the design cycle of a large-scale critical commercial avionics software
application. This effort analyzed the majority of the WM application to a very high
degree of rigor and completeness. The only portions of the WM application that were
excluded were those that were considered of lower criticality and those that dealt with the
hardware-software interface. Our success was predicated on understanding the needs and
development processes of the systems and software engineers who were building the WM
application. To meet these needs, we had to solve several challenges, including:

• Determining how to map software requirements into formal properties

• Creating translators that would allow commercial modeling tools (such as
Simulink [10], [22]) to be quickly and automatically analyzed by different formal
analysis tools

• Creating tools that allow analysis results (counterexamples) to be easily
understood by the analysts and product engineers

• Defining methods for partitioning the application of interest into subsystems that
can be analyzed individually

• Creating a verification process to ensure that: 1) the analysis results are sound, 2)
all formal properties are traceable to software requirements, and 3) all
requirements of interest are verified through one or more formal properties

• Iterating our verification process with the goal of faster turn-around between
development and analysis to create a more efficient and higher quality process.

 2

This report is a summary of how the challenges were met and overcome in the course of
analyzing the WM application.

The remainder of this report is organized as follows. Section 2 provides background
information, including an brief overview of a simplified WM and descriptions of the
modeling and analysis tools used in the project. Section 2.3 describes how the models
are translated into the analysis tools for verification. Section 3 describes the process that
was used to perform the analysis. Section 4 discusses how these techniques were applied
to the WM and our analysis results. Finally, Section 5 provides concluding remarks and
directions for further work.

2. Background
This section provides general background information, including a brief overview of a
simplified Window Manager and descriptions of the modeling and verification tools used
in the project.

2.1. Overview of the Window Manager Application
In a modern aircraft, the primary way that aircraft status information is displayed to pilots
is through computerized display panels, such as the ones shown in Figure 1. These
display panels are designed to replace the dozens of mechanical switches and dials found
in earlier aircraft and to present a unified and straightforward interface to critical flight
information. The display panels are configurable so as to allow pilots to toggle between
several different kinds of information, including navigational maps, aircraft system
status, flight checklists, etc. However, some information is considered critically
important and should always be displayed.

Figure 1: Example Pilot Display Panels

 3

A simplified architecture for such a system is presented in Figure 2. In this figure, two
displays provide information to the pilot and copilot. These displays are connected to
two redundant computing resources via a high-availability bus. Each computing resource
contains several display applications and a display window manager, and is capable of
managing both displays. Each display has a “preferred” computing resource that it uses
if both resources are available. The user can interact with the displays through the use of
a keypad and a trackball (not shown in the architectural figure). The trackball controls a
cursor that is visible on the displays. The cursor can move between displays in response
to a few different user actions

Figure 2: Simplified Displays Architecture

The Window Manager (WM) determines which applications should be displayed and the
location of the cursor on the displays. It also has several responsibilities related to routing
information to the displays. First, the WM must update which applications are being
displayed in response to user selections of display applications. Second, the WM must
handle reversion in case of hardware or application failures. If a display fails, the WM
decides which information is most critical and moves this information to the remaining
display. Another responsibility has to do with cursor management: some display
applications support the cursor while others do not. It is the responsibility of the WM to
ensure that the cursor does not appear on a display that contains an application that does
not support the cursor. In the event of reversion, the WM must ensure that the cursor is
not tasked to a dead display.

PFD EICAS MAP

…
PFD EICAS MAP

…

WM WM

Window Manager
Display Application

 4

The WM is essential to the safe flight of an airplane. If a WM contains logic errors, it is
possible that critical flight information will be unavailable to the flight crew.

The basic functionality of the WM application is similar to this example. However, the
real WM application is much more complex and involves more displays, more computing
resources, more architectural layers, more redundancy, and some additional functions that
are not found in this example.

2.2. Modeling and Verification Tools
This section provides an overview of the modeling and verification tools used in the
verification of the WM system. The WM was modeled in Simulink® and analyzed using
the NuSMV model checker. Reactis® was used in conjunction with software developed
by Rockwell Collins Inc (RCI) and the University of Minnesota to translate the Simulink
models into NuSMV. The PVS and SAL tools from SRI International were also
investigated as possible analysis tools.

2.2.1. Simulink
Simulink® [10] [22], sold by The Mathworks, is a popular platform for the modeling and
simulation of dynamic systems. It provides an interactive graphical environment and a
customizable set of block libraries that can be used to design, simulate, debug,
implement, and test reactive systems. Users assemble a system specification by dragging
and dropping blocks onto a pallet and connecting the outputs of one block to the inputs of
another block. Blocks can be composed hierarchically from simpler blocks, allowing
designers to organize complex system designs. New blocks can be defined by the
developer and added to a reusable library. Blocks can also be parameterized. Control
logic for representing system states and state transitions can be modeled with the
integrated StateFlow® add-on. Simulink and StateFlow are both integrated with the
MATLAB® environment, also marketed by The Mathworks, providing access to several
additional tools for algorithm development, data analysis, data visualization, and
numerical computation. Executable code can generated from a Simulink model using the
Real-Time Workshop® add-on. An advantage of Simulink is that it can be simulated with
fixed or variable-step solvers, allowing both the control system and the plant model (for
example, the airframe) to be modeled within the same framework.

2.2.2. SCADE
SCADE [12] is an environment for the development of safety-critical systems similar to
Simulink. Originally developed for the design of aircraft systems, similar but separate
versions are now marketed by Esterel Technologies for the automotive industry (SCADE
Drive™) and the avionics industry (SCADE Suite™). SCADE also provides an
interactive graphical environment that allows users to assemble system specifications by
dragging and dropping blocks onto a pallet and connecting the outputs of one block to the
inputs of another. Control logic for representing system states and state transitions can be
modeled with the integrated Safe State Machine© (SSM) add-on. Since the SCADE tools
were explicitly created for the development safety-critical software and hardware,
SCADE supports only fixed step simulation. For the same reason, the features and blocks
supported by SCADE and SSM are restricted to those with an unambiguous mathematical

 5

representation. An advantage of SCADE is that its models are translated into the Lustre
language, a synchronous data flow language with a precise formal semantics. C source
code can be generated from SCADE using the KCG™ code generator which has been
qualified as a Level A software development tool in accordance with DO178B. The
SCADE Suite also includes a gateway that can import Simulink models and a model
checker called Design Verifier.

2.2.3. Reactis
Reactis [29] is an automated test-generation and property verification tool for
Simulink/StateFlow models developed by Reactive Systems, Inc. It uses random and
heuristic search to try to exercise the behavior of models up to a defined level of
structural coverage. Reactis supports several different coverage metrics including state,
condition, branch, boundary, and MC/DC-level coverage [7]. The result of the search
process is a suite of tests which can be used both for structural testing and validation of
the model.

Reactis allows properties to be specified either using a proprietary Reactis textual
notation or as additional StateFlow machines, and will check whether all tests within a
test suite satisfy the properties of interest. Because Reactis uses random, rather than
exhaustive, search, it can be used to generate tests and attempt to verify properties of very
large models that cannot be analyzed by exhaustive search tools such as model checkers.
On the other hand, it is not guaranteed that Reactis will generate all tests necessary to
reach a level of structural coverage. Furthermore, the generated tests are insufficient to
prove that a given property always holds of a model.

2.2.4. NuSMV
NuSMV [19] is a symbolic model checker developed as a joint project between the
Formal Methods group in the Automated Reasoning System Division at the Instituto
Trintino di Cultura (ITC) - Center for Scientific and Technological Research (IRST), the
Mechanized Reasoning Groups at the University of Genova and the University of Trento
in Italy, and the Model Checking group at Carnegie Mellon University in the United
States. NuSMV is a re-implementation and extension of SMV, the first model checker
based on Binary Decision Diagrams (BDDs). NuSMV has been designed to be an open
architecture for model checking that can be reliably used for the verification of industrial
designs, as a core for custom verification tools, as a test bed for formal verification
techniques, and applied to other research areas. Properties to be verified in NuSMV are
specified using either Computation Tree Logic (CTL) or Linear Time logic (LTL).

The advantage of using a model checker such as NuSMV is that it will check all possible
combinations of inputs and state to determine if a property is true. We have used the
NuSMV model checker to verify properties of models with over 10120 reachable states.

2.2.5. PVS
PVS [31] is a theorem prover that has been developed at SRI International's Computer
Science Laboratory. In comparison to other widely used verification systems such as
HOL and ACL2, the distinguishing characteristic of PVS is that it supports a highly
expressive specification language with an interactive theorem prover in which most of the

 6

lower-level proof steps are automated. The system consists of a specification language, a
parser, a type checker, and an interactive proof checker. The PVS specification language
is based on higher-order logic with a richly expressive type system so that a number of
semantic errors in a specification can be caught during type checking. The PVS prover
consists of a powerful collection of inference steps that can be used to reduce a proof goal
to simpler subgoals that can be discharged automatically by the primitive proof steps of
the prover. The primitive proof steps involve, among other things, the use of arithmetic
and equality decision procedures, automatic rewriting, and BDD-based Boolean
simplification.

2.2.6. SAL
SAL (Symbolic Analysis Laboratory) [32] is a framework for combining different tools
to analyze sequential and concurrent systems. The heart of SAL is a language, developed
in collaboration with Stanford, Berkeley, and Verimag, for specifying concurrent systems
in a compositional way. The SAL framework contains tools for abstraction, invariant
generation, program analysis (such as slicing), theorem proving, and model checking.
These tools can be used to separate different analysis concerns and calculate properties
(i.e., perform symbolic analysis) of sequential and concurrent systems. SAL includes an
explicit-state model checker, a BDD-based symbolic model checker, a SAT-based
bounded model checker, and a SAT-based infinite bounded model checker which can
symbolically analyze systems containing real numbers. SAL can also be used as an
interface to the PVS theorem prover.

2.3. Translation of Simulink into Analysis Tools
The translation of Simulink models into NuSMV or other analysis tools requires several
steps. However, these are automated and normally completed without great difficulty.
The translation process is illustrated in Figure 3.

 7

Simulink

StateFlow

SCADE

Safe State
Machines

Lustre

NuSMV

PVS

Design
Verifier

SAL

ICS

Symbolic
Model Checker

Bounded
Model Checker

Infinite Bounded
Model Checker

Reactis

MathWorks

Esterel Technologies
SRI International

Rockwell Collins/
University of Minnesota

Reactis

Simulink
Gateway

Simulink
Gateway

Figure 3 – Translator Framework

Models are first created using MATLAB Simulink and/or StateFlow. These models then
are translated into the Lustre formal specification language using one of two tool chains.
In our original tool chain, Simulink/StateFlow models were imported into the SCADE
Suite using the Simulink Gateway provided by Esterel Technologies. SCADE Suite is
then used to translate the models into Lustre. In a recent update to our tool chain, the
Simulink/StateFlow models are imported into Reactis and a Lustre file is generated using
a translator developed by Rockwell Collins and the University of Minnesota (hereafter
RCI-UMN).1 From Lustre, the models are translated into NuSMV, PVS, or SAL using
translators developed by RCI-UMN. The Lustre models can also be imported into Design
Verifier, a model checker available in SCADE Suite.

The RCI-UMN translators produce highly optimized models most appropriate for the
target language. For example, when translating to NuSMV, the translator produces a
specification that is difficult for a human to read, but very efficient for proving properties.
When translating to PVS, the resulting specification is optimized for readability and to
support the development of proofs in PVS.

Since the WM model consists primarily of Boolean and enumerated types, it is very
efficient to verify properties about the mode logic using a BDD-based model checker
such as NuSMV. NuSMV, SAL, PVS, and Design Verifier were also investigated and
found to be acceptable alternatives. However, due to the speed and ease of use of
NuSMV, the bulk of the WM verification was done using it. A more detailed comparison
of the pros and cons of verification using NuSMV and PVS can be found in [25].

1 For analysis of the DWM, the Reactis tool chain was preferred as Esterel Technologies Simulink Gateway
did not yet support release R14 of Simulink, introducing an additional step to convert Simulink R14 models
into R13 when using the Simulink Gateway.

 8

3. Analyzing a Large Software Model
The WM is a large application and analyzing the complete model is beyond the capability
of current automated tools, even with the optimized translation tools described in Section
2.3. Therefore, we adopted several techniques to partition the model into analyzable
subsystems, and use additional manual reasoning to ensure that the subsystem-level
reasoning ensures that the system as a whole maintains critical safety properties. This
section describes how this partitioning occurs and what steps are taken to ensure that the
resulting analysis is sound. An overview of this process is shown in Figure 4.

Subsystem LevelSystem Level

System
Requirements

System
Requirements

System
Simulink

Model

System
Simulink

Model

Subsystem k
Model +

Properties +
Assumptions

Subsystem k
Model +

Properties +
Assumptions

Create
Analysis

Subsystems

Subsystem 1
Model +

Properties +
Assumptions

Subsystem 1
Model +

Properties +
Assumptions

System
Environmental
Assumptions

System
Environmental
Assumptions …

Analyze
Subsystem

…

…

Figure 4: Overview of Analysis Process

In Figure 4, the circles correspond to processes and the document icons correspond to the
artifacts generated by these processes. The create analysis subsystems step splits the
model into different subsystems and assigns a set of system requirements that will be
analyzed on the subsystem. After the subsystems have been created, then the analyze
subsystem step is performed on each of the subsystems. The result of the analysis process
may require changes to the subsystem under analysis, to another subsystem, or to the
system level requirements or environmental assumptions.

Although not shown in Figure 4, the whole process is iterative as the system evolves. We
believe that significant benefits can be achieved by analyzing early iterations of systems,
even when both requirements and models are incomplete. As the system evolves, the
analysis subsystem boundaries may be re-drawn and additional properties are added.

 9

3.1. Formal Model of a Toy Window Manager
To illustrate the different steps in the analysis of the WM application without introducing
the complexity of the full WM, we have created a toy WM Simulink model that
implements some of the requirements described in Section 2.1. To protect proprietary
Rockwell Collins data, this example is purposely different from the real WM application,
but is sufficiently representative to illustrate many of the concepts and procedures
necessary to analyze a much larger model.

Figure 5: Toy WM application

The two subsystems in the application are DU_APPLICATION_SELECTION and
CURSOR_PLACEMENT, which manage mapping applications to display units and the
location of the cursor, respectively. The inputs to the model are:

• Left/Right DU Available: These inputs describe whether or not the left (right)
display unit is available.

• Left/Right Switchbanks: The pilot and copilot have three-way switches to select
which application to display on a display unit. The three switch positions are
EICAS, PFD, and MAP. Depending on the switch position, one of the left (right)
switch bank inputs is true and the other left (right) switch bank inputs are false.
When the switch is being turned, it is also possible that all of the switch bank
inputs are false.

• Left/Right Cursor Manual Requests: The pilot or copilot can manually request
that the display cursor be moved to the left display or the right display using two
buttons. In these instances, the left or right manual request inputs are true.

The outputs of the model are:

 10

• Left/Right DU Application: These outputs are enumerations: {0 = BLANK, 1 =
EICAS, 2 = PFD, 3 = MAP} that describe what is to be displayed on a DU.

• Cursor Location: This output is an enumeration {0 = No Cursor, 1 = Left DU, 2
= Right DU} that describes the location of the display cursor.

3.2. Creating Analysis Partitions
The first step in analyzing the model is to create analysis partitions that can be
automatically analyzed. An visual overview of this process is shown in Figure 6.

Subsystem LevelSystem Level

System
Requirements

System
Requirements

System
Simulink

Model

System
Simulink

Model

Group
Related

Requirements

System
Environmental
Assumptions

System
Environmental
Assumptions

Create
Analysis
Models

Related
System
Reqs

Related
System
Reqs

Subsystem
Simulink
Models

Subsystem
Simulink
Models

Formalize
Reqs

Subsystem
Properties

Subsystem
Properties

Determine
Subsystem

Environmental
Assumptions

Subsystem
Assumptions
(Invariants)

Subsystem
Assumptions
(Invariants)

Figure 6: Creating Analysis Partitions

3.2.1. Group Related Requirements
To create analysis partitions, we first try to group system requirements into sets that can
be checked against a portion of the system Simulink model. In our experience with the
WM and the FCS 5000 (explained in [24]), it is usually the case that the properties
naturally partition into sets that are functionally related to one another, and that the truth
or falsehood of these property sets can be determined by examining a relatively small
portion of the entire Simulink model.

However, there are some system-level properties that span most or all of the entire model.
In this case, we try to split the property of interest into sub-properties that can be assigned
to specific subsystems, and whose truth implies the truth of the larger property. We defer
this process until after we have decomposed the model into analysis subsystems (Section
3.2.2). At that point, we can attempt to factor the property into sub-properties that are
parceled out to the subsystems.

For our running toy WM example, we would like to check the following requirements:

 11

Requirement 1: If a DU is available, then it shall display some application.
Requirement 2: If a DU is unavailable, then it shall not attempt to display any
application.
Requirement 3: The cursor shall not be displayed on a DU that is unavailable.
Requirement 4: The cursor shall not be displayed on a DU whose application is not
MAP.
Requirement 5: When the MAP application is selected for a side, then the cursor shall
move to that side.
Requirement 6: When the EICAS button is pressed, the display application shall be
EICAS.
Requirement 7: When the PFD button is pressed, the display application shall be PFD.
Requirement 8: When the MAP button is pressed, the display application shall be MAP.

3.2.2. Decompose Model into Analysis Subsystems
After grouping the properties, we carve up the system model into reasonably sized
analysis models that are sufficient to check one or more of the requirements groups. We
would like to make each subsystem small enough (currently < 1050 states) that it is
straightforward to analyze using our BDD-based model checking tools. If a subsystem
for a set of safety properties is too large to be comfortably analyzed, we use some
additional techniques described in Section 3.4.1 to try to reduce it further. An example of
this partitioning for the toy WM application of Section 3.1 is shown in Figure 7, in which
the heavy lines indicate the boundaries of each analysis partition.

 12

3
CURSOR_LOCATION

2
RIGHT_DU_APPLICATION

1
LEFT_DU_APPLICATION

LEFT_DU_AVAILABLE

LEFT_SWITCHBANK_EICAS

LEFT_SWITCHBANK_PFD

LEFT_SWITCHBANK_MAP

RIGHT_DU_AVAILABLE

RIGHT_SWITCHBANK_EICAS

RIGHT_SWITCHBANK_PFD

RIGHT_SWITCHBANK_MAP

LEFT_DU_APPLICATION

RIGHT_DU_APPLICATION

DU_APPLICATION_SELECTION

LEFT_DU_APPLICATION

RIGHT_DU_APPLICATION

LEFT_MANUAL_REQUEST

RIGHT_MANUAL_REQUEST

CURSOR_LOCATION

CURSOR_PLACEMENT

10
RIGHT_MANUAL_REQUEST

9
LEFT_MANUAL_REQUEST

8
RIGHT_SWITCHBANK_MAP

7
RIGHT_SWITCHBANK_PFD

6
RIGHT_SWITCHBANK_EICAS

5
LEFT_SWITCHBANK_MAP

4
LEFT_SWITCHBANK_PFD

3
LEFT_SWITCHBANK_EICAS

2
RIGHT_DU_AVAILABLE

1
LEFT_DU_AVAILABLE

Figure 7: Toy WM application with subsystem boundaries

In the Toy Window Manager, the set of safety properties to be verified are clustered
around the two areas of the model. The first set determines selection of an application to
display on each display unit (requirements 1, 2, 6, 7, and 8). This set can be analyzed by
examining the upper partition of the model, shown in solid blue. The second set
determines where to locate the cursor (requirements 4 and 5). This set can be analyzed
by examining the lower partition of the model shown in dashed red.

The remaining requirement (requirement 3) spans both subsystems and will have to be
split into requirements over the subsystems that together entail the original requirement.
We will describe how this is accomplished during formalization of requirements
(Sections 3.2.3 and 3.2.4).

If the original Simulink system model is properly architected, then these analysis models
can be generated with very little effort. In Simulink, it is possible to split an application
into libraries that can be loaded into several models. As long as the subsystems to be
analyzed are contained in libraries, we can very easily create new top-level models
containing the subsystems. Then, as long as the subsystem interfaces remain stable, the
libraries can evolve without touching the analysis models.

 13

3.2.3. Formalizing Safety Requirements into Properties
The next step in analyzing the model involves formalizing the functional and safety
requirements into CTL properties. For a synchronous system where the requirements are
specified as “shall” statements over system inputs and outputs, this process is relatively
straightforward2. In [24], [25], and [35], we described the process of translating these
informal statements into safety properties in more detail.

The system requirements document is not the only source of properties to be analyzed.
Properties also emerge from discussions with developers about the functionality of
different subsystems, or even from a careful review of a particular implementation detail
of the Simulink model. In some cases, these properties can be thought of as validity
checks for particular implementation choices, but on occasion they lead to additions to
the system requirements document.

For example, in the Toy WM model, the LEFT_DU_APPLICATION and RIGHT_DU_APPLICATION
outputs are implemented as integers, but they are supposed to act like enumerations.
Therefore, they should always be in the range 0 (BLANK) to 3 (MAP). Otherwise, the
output is out-of-range. This aspect of the implementation can be easily formalized and
checked.

Most of the requirements in the WM (and all of the Toy WM requirements) fall into two
CTL templates. The first is simply a constraint that must be maintained by all reachable
states. For example, the requirement:

If a DU is available, then it shall display some application

can be translated into two CTL properties (one for each side) as follows:

AG(LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION != BLANK)
 AG(RIGHT_DU_AVAILABLE -> RIGHT_DU_APPLICATION != BLANK)

The AG operator states that the property must hold for all globally reachable states, and
-> is the implication operator, The formal property for the left side can be paraphrased:

In all reachable states, if the left DU is available, then its application shall
not be blank.

The second template is a constraint over a reachable system state and all possible next
states. This template is required when we are interested in observing the behavior of the
system at the moment some change occurs. For example, in the requirement:

When the MAP application is selected for a side, then the cursor shall
move to that side.

2 Occasionally, internal variables within the analysis model are used to specify properties, but this is
discouraged, because in this case the correctness of the analysis hinges on whether the internal variable was
correctly computed. If internal variables are used, then additional properties must be developed and
specified to ensure that the internal variable is correctly computed.

 14

we are interested in the moment when the MAP application is selected.. This
requirement can be translated into CTL (for the left side) as:

AG(LEFT_DU_APPLICATION != MAP ->
AX(LEFT_DU_APPLICATION = MAP ->

CURSOR_LOCATION = LEFT_DU))

where the AX operator encloses a property that must hold in all next states. Given these
operator definitions, the property can be paraphrased:

In any state in which LEFT_DU_APPLICATION is not equal to MAP,
then in any next state in which LEFT_DU_APPLICATION is equal to
MAP, the CURSOR_LOCATION must be LEFT_DU.

In order to define ‘selection’, we have to describe the change in state of
LEFT_DU_APPLICATION. The AX operator provides this ability.

Given the system inputs described in Figure 5, we can formalize the Toy WM
requirements in CTL as shown in table Table 1. Most of the properties in the full WM
follow these CTL forms, but occasionally additional CTL operators are used. For a
complete introduction to CTL and LTL, see [9].

 15

Requirement: CTL Properties:
1: If a DU is available,

then it shall display some
application

AG(LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION != BLANK)

AG(RIGHT_DU_AVAILABLE -> RIGHT_DU_APPLICATION != BLANK)

2: If a DU is unavailable,
then it shall not attempt

to display any
application

AG(!LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION = BLANK)

AG(!RIGHT_DU_AVAILABLE -> RIGHT_DU_APPLICATION = BLANK)

3: The cursor will not be
displayed on a DU that is

unavailable

AG(!LEFT_DU_AVAILABLE -> CURSOR_LOCATION != LEFT_DU)

AG(!RIGHT_DU_AVAILABLE -> CURSOR_LOCATION != RIGHT_DU)

4. The cursor shall not be
displayed on a DU

whose application is not
MAP

AG(LEFT_DU_APPLICATION != MAP -> CURSOR_LOCATION !=
LEFT_DU))

AG(RIGHT_DU_APPLICATION != MAP -> CURSOR_LOCATION !=
RIGHT_DU)

5. When the MAP
application is selected for

a side, then the cursor
shall move to that side

AG(LEFT_DU_APPLICATION != MAP -> AX(LEFT_DU_APPLICATION =
MAP -> CURSOR_LOCATION = LEFT_DU))

AG(RIGHT_DU_APPLICATION != MAP -> AX(RIGHT_DU_APPLICATION =
MAP -> CURSOR_LOCATION = RIGHT_DU))

6. When the EICAS
button is pressed

(SELECT_EICAS),
EICAS shall be the
display application

AG(LEFT_SELECT_EICAS -> LEFT_DU_APPLICATION = EICAS)

AG(RIGHT_SELECT_EICAS -> RIGHT_DU_APPLICATION = EICAS)

7. When the PFD button
is pressed

(SELECT_PFD), PFD
shall be the display

application

AG(LEFT_SELECT_PFD -> LEFT_DU_APPLICATION = PFD)

AG(RIGHT_SELECT_PFD -> RIGHT_DU_APPLICATION = PFD)

8. When the MAP
button is pressed

(SELECT_MAP), MAP
shall be the display

application

AG(LEFT_SELECT_MAP -> LEFT_DU_APPLICATION = MAP)

AG(RIGHT_SELECT_MAP -> RIGHT_DU_APPLICATION = MAP)

Each
DU_APPLICATION

variable shall always be
assigned a value between

0 and 3.

AG(LEFT_DU_APPLICATION <= 3 & LEFT_DU_APPLICATION >= 0)

AG(RIGHT_DU_APPLICATION <= 3 & RIGHT_DU_APPLICATION >= 0)

Table 1 : Formalizing Written Requirements

3.2.4. Factoring System-Level Properties
There are some system-level properties that span most or all of the model. In this case,
we try to split the property of interest into sub-properties that can be assigned to specific
subsystems and whose truth imply the truth of the larger property. The process for
factoring system level properties is shown in Figure 8.

 16

System
Requirement

System
Requirement

Formalize
Property

System
Property
System
Property

Determine
Necessary

Subsystems

Subsystem
Simulink
Models

Subsystem
Simulink
Models

Necessary
Simulink

Subsystems

Necessary
Simulink

Subsystems

Create
Sufficient

Subsystem
Properties:

Requires Manual
Proof

Subsystem
Properties

Subsystem
Properties

Analyze
Subsystem
Properties

Subsystem
Properties

Verified

Subsystem
Properties

Verified

Figure 8: Factoring System-Level Properties

This process is fairly straightforward, but requires some creativity when splitting the
property into parts that can be analyzed on the analysis subsystems. Furthermore, it is the
responsibility of the analyst to manually prove whether these subsystem properties entail
the system-wide property.

For example, requirement #3 states that the cursor will not be displayed on a display unit
that is unavailable. Formally, this is expressed:

AG(!LEFT_DU_AVAILABLE -> CURSOR_LOCATION != LEFT_DU)

AG(!RIGHT_DU_AVAILABLE -> CURSOR_LOCATION != RIGHT_DU)

We will examine the left side property; since the system is symmetric, this also proves
the property for the right side. The property cannot be checked by examining the
application placement subsystem as it does not describe the cursor location, and also
cannot be checked by the cursor placement subsystem, since it does not contain inputs
determining DU availability. However, it is possible to determine the validity of the
property by examining the properties for requirements two and four.

Given the validity of subsystem properties two and four:

AG(!LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION = BLANK) (Req. 2)
AG(LEFT_DU_APPLICATION != MAP -> CURSOR_LOCATION != LEFT_DU)) (Req 4.)

and an additional (trivial) property:

SPEC AG(LEFT_DU_APPLICATION = BLANK -> LEFT_DU_APPLICATION != MAP)

 17

we can immediately determine

AG(!LEFT_DU_AVAILABLE -> CURSOR_LOCATION != LEFT_DU)

The case for the right side property is symmetric.

3.2.5. Determine System Invariants on Subsystem Inputs
It is often not possible to verify interesting safety properties on a large model in a
completely unconstrained environment. Instead, the correctness of the controller depends
on certain environmental assumptions about its environment. As part of the analysis
process, we examine the environmental assumptions in the requirements document to
create constraints on the possible values of inputs into the system. The constraints on
inputs are specified as invariants in NuSMV, which restrict the states that will be visited
during the model checking process. In this step, we determine and formalize the
applicable environmental assumptions for each subsystem as NuSMV invariants. For
reasons that are explained in the following two paragraphs, we initially use these
invariants as tools to explain counterexamples rather than to restrict analysis, and we
leave them commented out.

Although invariants are necessary to prove “interesting” properties over subsystems, they
are also dangerous to the soundness and applicability of the analysis. If conflicting
invariants are specified, then there are no states that satisfy the invariants, so all
properties are trivially true. Similarly, if invariants restrict the set of allowed inputs so
that it is a subset of the possible inputs to the real system, then our analysis will be
incomplete. Finally, just because constraints are specified in the requirements document
does not mean that other systems will actually obey these constraints.

Therefore, although we formalize the invariants in this step we do not use them in our
initial model checking analysis. If the initial subsystem analyses return counterexamples,
we analyze the counterexamples to see whether they are due to violations of our
invariants or due to incorrect behavior within the model. Even if counterexamples are
due to invariant violations, we prefer to strengthen the model behavior, when possible, to
deal with abnormal environments rather than use system invariants. If it is determined
that there is no good way to handle abnormal environments within the model, then we
finally begin to use the invariants derived from the environmental assumptions.

3.3. Reducing State: Scaling, Abstraction, and Refactoring
The primary limiting factor when using the model checker is the size of the state space.
In this section, we describe strategies to reduce the size of model state spaces that were
used in the WM analysis.

3.3.1. Replacing Reals with Integers
Our current model-checking tools are unable to reason about real numbers. Fortunately,
real-valued variables are not used in a substantive way for the WM application, and we
have developed simple techniques to replace reals with integer subranges.

 18

We have used a simplified version of domain reduction abstraction [8], which attempts to
reduce the domain of some variable while preserving the interesting traces, i.e., the ones
that can lead to a counterexample, of system behavior. The idea is to preserve enough
values such that all conditions involving real numbers will be completely exercised.

In the WM, real numbers are only used in addition and subtraction by constants and
comparisons between real-valued variables and constants. Therefore, it is very
straightforward to preserve the behavior of these variables using a scaled range of
integers. The range of the integer is determined by examining all of the relational
comparisons and arithmetic operations in the model and the formal properties that
involve the variable. For example, one real-valued variable in the “full” WM is the
vertical position of the cursor on a display, so that when the cursor is transferred to
another display, it is at the same vertical position. However, this position is never
changed by the WM, and is only used to notify the “new” display when a cursor transfer
occurs. Therefore, we can effectively replace the real number with a constant integer.

3.3.2. Scaling Integer Ranges
In order to efficiently model-check a specification, we would like to determine the
minimal range necessary to represent the behavior of each variable in the model. This is
because the performance of BDD-based model checkers is directly correlated to the
ranges of the variables in the model. The SMV translation tools currently allow the user
to specify the default range of all integer variables within the model, which allow a gross
level of control over ranges.

However, when models become large, fine-tuning the integer subranges on a variable-by-
variable can have a dramatic impact on model-checking performance. Currently, this is
done manually by editing the generated SMV model. In the future, we plan to add
support for automatically deriving bounds for variables within the model to the
translation tools.

3.3.3. Refactoring Simulink Models
Design choices that lead to code-bloat or poorly cohesive systems also affect the
performance of the model checker. A rule of thumb is that the larger the number of
blocks within a model, the longer it will require to analyze. Therefore, model re-
factoring is not only a useful design activity, but often necessary to successfully analyze
large subsystem models.

In our experience, we have re-factored WM models in which some piece of functionality
(e.g., display application placement) is replicated (e.g., left-side and right-side display
application placement) by “copy and paste reuse”. By properly packaging the
functionality into subsystems, we can split the analysis task into independent parts,
leading to much faster analysis.

Similarly, when creating the analysis models, it is possible to indirectly analyze
subsystem coupling by examining the complexity of subsystem invariants between the

 19

outputs of one subsystem and the inputs of another subsystem. If complex invariants are
required to prove properties about a subsystem, then it is likely the case that the
subsystem is tightly coupled to the subsystem that generates the outputs. These cases
should be examined to determine if it is possible to refactor the design to simplify the
analysis invariants.

3.4. Analyzing Subsystems
The next phase is to iteratively analyze the subsystems created from splitting up the
system Simulink model. An overview of this process is shown in Figure 9.

Subsystem
under Analysis

Incorrect / Missing Env. Assumption

Subsystem X
Properties

Subsystem X
Properties

Subsystem X
Simulink

Model

Subsystem X
Simulink

Model

Subsystem X
Environmental
Assumptions
(Invariants)

Subsystem X
Environmental
Assumptions
(Invariants)

Run RCI / UMN
Translators +
Model Checker

Model
Checker
Results

Model
Checker
Results

Analyze
Counterexamples

Property
Incorrectly
Specified

System
Invariant

Requirement
Incorrectly
Specified

System
Requirements

System
Requirements

Subsystem Y
Invariant

System
Environmental
Assumptions

System
Environmental
Assumptions

Model
Error

Rewrite
Property

Add/Strengthen
Invariant

Update
System Req.

Update System
Assumptions

Fix Model

Add/Modify Inv.
as Subsystem Y

PropertySubsystem Y
Properties

Subsystem Y
Properties

User generated artifact

System generated artifact

Process

User error determination

Key
User generated artifact

System generated artifact

Process

User error determination

Key

Figure 9: Subsystem Analysis Process

The process consists of several stages. First, we run the RCI-UMN translators to
translate the Simulink model into NuSMV syntax and merge in the properties and
environmental assumptions for the subsystem. If no counterexamples are discovered,
then the analysis is complete. Otherwise, we analyze the counterexample to determine
how to fix the problem.

 20

3.4.1. Running RCI/UMN Translators and NuSMV
The first step in the analysis process is to run the RCI-UMN translators and NuSMV. In
order to facilitate this process, we have created a simple Java program to automate parts
of the process shown in Figure 10.

Subsystem
Simulink
Models

Subsystem
Simulink
Models

RCI/UMN Translators

Properties
Prove?

Subsystem
Satisfies

requirements

Yes

No

Counterexample
(NuSMV output)

Counterexample
(NuSMV output)

Counterexample:
Formatted MS

Excel Worksheet

Counterexample:
Formatted MS

Excel Worksheet

Counterexample:
Reactis Test

Suite

Counterexample:
Reactis Test

Suite

Counterexample:
SCADE input

script

Counterexample:
SCADE input

script

Model Check
Specification

NuSMV
Specification

with CTL
Properties

NuSMV
Specification

with CTL
Properties

Figure 10 : RCI/UMN translator functionality

The heart of this automated process includes testing the specification, dumping NuSMV’s
raw output to a simple text file, and running the RCI/UMN suite of translation
applications to achieve the desired format for interpretation.

3.4.2. Interpreting Counterexamples
For sufficiently large systems, determining the root cause of counterexamples by
examining the model checker output can be difficult and time consuming. We have
created automated tools to translate NuSMV counterexamples into the input language for
the SCADE and Reactis Simulink simulators (Figure 10). This capability allows us to
step forward through the test case and examine the values of internal variables in the
model. Reactis and SCADE both have strong simulation capabilities allowing an analyst
to forward/back step through a counterexample and easily descend through different
subsystems within a Simulink model. We have found this capability invaluable when
trying to understand and fix complex counterexamples.

3.4.3. Fixing a Problem Identified by a Counterexample
When a counterexample is discovered, it is classified by its underlying cause. The cause
may be one or more of the following:

 21

• Modeling error
• Property formalization error
• Incorrect/missing invariants for the subsystem
• High-Level requirements error

The process of determining the cause of the fault is somewhat an effort in consensus
building given the requirement, the formal property, the model, and the counterexample.
We illustrate in the next section with a small model derived from our toy window
manager.

3.4.4. Example: The CURSOR_PLACEMENT Subsystem.
We will illustrate the subsystem analysis process with the CURSOR_PLACEMENT
subsystem defined in 4.4.2. This subsystem is responsible for ensuring that the cursor is
placed on a display that can support it. The model consists of two subsystems and is
shown in Figure 1. The first subsystem, CURSOR_LOCATION_AVAILABILITY,
outputs whether or not the left/right DU application is equal to MAP. Recall that MAP is
the DU application that supports a cursor. The CURSOR_LOCATION_SELECTION
subsystem determines where the cursor will be placed given availability of DUs and
requests.

1
CURSOR_LOCATION

LEFT_REQUEST

RIGHT_REQUEST

LEFT_DU_AVAILABLE

RIGHT_DU_AVAILABLE

CURSOR_LOCATION

CURSOR_LOCATION_SELECTION

LEFT_DU_APPLICATION

RIGHT_DU_APPLICATION

LEFT_DU_AVAILABLE

RIGHT_DU_AVAILABLE

CURSOR_LOCATION_AVAILABILITY

4
RIGHT_MANUAL_REQUEST

3
LEFT_MANUAL_REQUEST

2
RIGHT_DU_APPLICATION

1
LEFT_DU_APPLICATION

Figure 11: CURSOR_PLACEMENT Subsystem

The CURSOR_LOCATION_SELECTION subsystem is shown in Figure 12. If no DUs
are available, then the cursor is placed on NULL. The logic for assignment is
straightforward: The cursor is placed on a DU if the other DU is unavailable or if a
request to that DU is made, provided that DU is available.

 22

1
CURSOR_LOCATION

z

1
<Init = 0>

2

RIGHT_DU

PLACE_CURSOR_ON_RIGHT

PLACE_CURSOR_ON_NULL

PLACE_CURSOR_ON_LEFT

0

NULL_DU

NOT

NOT

NOT

OR

AND

AND
NOT

AND

OR

1

LEFT_DU

4
RIGHT_DU_AVAILABLE

3
LEFT_DU_AVAILABLE

2
RIGHT_REQUEST

1
LEFT_REQUEST

Figure 12: CURSOR_LOCATION_SELECTION subsystem

There are two requirements and four properties allocated to the CURSOR_PLACEMENT
subsystem, shown below.

4. The cursor will not be
displayed on a DU whose
application is not MAP

AG(LEFT_DU_APPLICATION != MAP -> CURSOR_LOCATION != LEFT_DU)

AG(RIGHT_DU_APPLICATION != MAP -> CURSOR_LOCATION !=RIGHT_DU)

5. When the MAP
application is selected for
a side, then the cursor will

move to that side

AG(LEFT_DU_APPLICATION != MAP -> AX(LEFT_DU_APPLICATION =
MAP -> CURSOR_LOCATION = LEFT_DU))

AG(RIGHT_DU_APPLICATION != MAP -> AX(RIGHT_DU_APPLICATION =
MAP -> CURSOR_LOCATION = RIGHT_DU))

The properties associated with requirement 4 prove immediately on the model that we
presented. However, both properties associated with requirement 5 fail.

Examining a Counterexample: Model Error
The translation tools allow counterexamples to be displayed in Microsoft Excel and also
to be imported as test cases in Reactis and SCADE. An example of the excel spreadsheet
generated from the counterexamples is shown in Figure 13.

 23

Figure 13: Excel Spreadsheet Generated for Counterexamples

A counterexample is a test case that shows one way in which the property of interest is
violated. In the excel format, the violated properties are presented in the “requirements”
section of the spreadsheet, and for each property, the counterexample associated with the
property is presented below the property in the “tests” section. In Figure 13, we have two
counterexamples for the properties associated with Requirement 5. Each step has four
inputs and one output, matching the signature of the CURSOR_PLACEMENT
subsystem.

The first counterexample is three steps long, and describes a violation of the left-side
property. To explain the counterexample, we recall the ranges for Left/Right DU
application and cursor location introduced in Section 3.1:

• Left/Right DU Application: These outputs are enumerations: {0 = BLANK, 1 =
EICAS, 2 = PFD, 3 = MAP} that describe what is to be displayed on a DU.

• Cursor Location: This output is an enumeration {0 = No Cursor, 1 = Left DU, 2
= Right DU} that describes the location of the display cursor.

Now we observe that in the third step (Time = 3), the left DU application changes from
EICAS to MAP but the cursor location is still Right_DU, violating the property.

After a cursory examination of our model, we realize that we have no functionality to
support requirement 5: there is no behavior that moves the cursor to a DU when MAP is

 24

selected. We add this functionality by treating a selection of the MAP application the
same as a manual cursor request (recall that LEFT_DU_AVAILABLE is true only when
LEFT_DU_APPLICATION is MAP) and update the model as shown in Figure 14.

Figure 14: Fixed Cursor Manager Model

Now, we can re-run the properties against the updated model.

Examining a Counterexample: Requirements Deficiency
When we re-run the model checker, all of the properties hold except the right-side case of
Requirement 5:

AG(RIGHT_DU_APPLICATION != MAP -> AX(RIGHT_DU_APPLICATION = MAP ->
CURSOR_LOCATION = RIGHT_DU))

The counterexample is shown in Table 2. From examining this table, we see that if a left
manual request is received at the same time as the right DU application becomes map,
then the left side will take precedence.

2
RIGHT_REQUEST

1
LEFT_REQUEST

OR

Logical
Operator1

OR

Logical
Operator

RISEEDGETRIG

RISEEDGETRIG

4
RIGHT_DU_AVAILABLE

3
LEFT_DU_AVAILABLE

2
RIGHT_MANUAL_REQUEST

1
LEFT_MANUAL_REQUEST

1
CURSOR_LOCATION

LEFT_MANUAL_REQUEST

RIGHT_MANUAL_REQUEST

LEFT_DU_AVAILABLE

RIGHT_DU_AVAILABLE

LEFT_REQUEST

RIGHT_REQUEST

REQUEST_PROCESSING

LEFT_REQUEST

RIGHT_REQUEST

LEFT_DU_AVAILABLE

RIGHT_DU_AVAILABLE

CURSOR_LOCATION

CURSOR_LOCATION_SELECTION

LEFT_DU_APPLICATION

RIGHT_DU_APPLICATION

LEFT_DU_AVAILABLE

RIGHT_DU_AVAILABLE

CURSOR_LOCATION_AVAILABILITY

4
RIGHT_MANUAL_REQUEST

3
LEFT_MANUAL_REQUEST

2
RIGHT_DU_APPLICATION

1
LEFT_DU_APPLICATION

 25

REQUIREMENTS

AX AG (RIGHT_DU_APPLICATION != MAP -> AX
(RIGHT_DU_APPLICATION = MAP -> CURSOR_LOCATION = RIGHT_DU))

TIMES 1 2

INPUTS
 LEFT_DU_APPLICATION 3 3
 RIGHT_DU_APPLICATION 0 3
 LEFT_MANUAL_REQUEST 0 1
 RIGHT_MANUAL_REQUEST 0 0

OUTPUTS
 CURSOR_LOCATION 1 1

Table 2 : Requirement #5 Counterexample

In this case, we have found a deficiency in our requirements: what should occur if both
sides choose the MAP application simultaneously? Currently our requirements state that
when MAP is selected for a DU, then the cursor will migrate to the DU where it was
selected. However, they do not state what should happen if both sides choose the MAP
application simultaneously.

There are several ways to resolve this issue; in our case, we choose the left side DU as
the default DU in case of simultaneous requests. To simplify our property, we also
introduce two variables into the properties file: WHEN_LEFT_MAP and
WHEN_RIGHT_MAP. These variables are true in the instant when the left/right side
DU changes to MAP, and false otherwise.

5. When the MAP application is

selected for a DU, the cursor will
move to that DU. In case both
sides are simultaneously selected,
the left side DU will be chosen.

AG(WHEN_LEFT_MAP ->
 CURSOR_LOCATION = LEFT_DU)

AG((WHEN_RIGHT_MAP & !WHEN_LEFT_MAP) ->
 CURSOR_LOCATION = RIGHT_DU)

After making these changes, all of the properties associated with the cursor placement
subsystem succeed.

4. Analysis Results on the WM Model
In the previous sections, we examined in detail the verification of a toy Window Manger
in order to illustrate how modeling can be applied to such systems. In this section, we
discuss the formal verification of the actual ADGS-2100 Adaptive Display & Guidance
System Window Manager. Of course, details of the WM design are highly proprietary
and cannot be described in detail here. However, it is possible to discuss the scope of the
effort, what information is being collected, and the number and sorts of errors found to
date.

 26

4.1. Scope of the Effort
The actual WM is much larger and more complex than the toy window manager
described in Section 2.1. It is also considered critical (DO178B Level A) to the operation
of the aircraft. We are currently verifying through model-checking approximately 90%
of the functional behavior of the WM application (in terms of the number of Simulink
blocks). The remaining 10% of the model is in one subsystem that contains a significant
number of real- and integer-valued variables. This subsystem does not contain much
mode-specific behavior and is not considered a likely source of design errors. For these
reasons, we have not included it in our analysis.

We currently have five analysis models that are used for analyzing the behavior of the
window manager. Table 3 provides an overview of the analysis results thus far.

Subsystem Subsystem
Instances Basic Blocks Reachable

State Space Properties
Confirmed

Errors
(To Date)

GG 2,831 10,669 9.8 x 109 43 56

PS 144 398 4.6 x 1023 152 10

CM 139 1,009 1.2 x 1017 169 10

DUF 879 2941 1.5 x 1037 115 8

MFD 302 1,100 6.8 x 1031 84 14

Totals 4295 16,117 n/a 563 98

Table 3 : WM analysis data

The first column is just the abbreviation for the subsystem. The next two columns are
designed to provide a feeling for the size of the Simulink models. The Number of
Subsystem Instances column describes the number of user-defined Simulink subsystem
instances within the model. This measure is distinct (and larger than) the number of
different subsystem types, since each subsystem type may have several instances. The
number of basic blocks counts the number of basic Simulink operators used within the
model. The reachable state space is the number of states the subsystem can visit during
execution. The final two columns are the number of properties defined for each model
and the number of confirmed errors found.

4.2. Information Collected
As errors are detected, they are each logged in a problem report and tagged with the
following information:

• Date of discovery

 27

• The individual that found it
• Subystem the error was found in
• Brief description
• How it was found
• Proposed and actual resolution.

Errors are not only found through model checking. Sometimes, simply reading the
requirements prior to modeling reveals errors. These errors are classified as being found
through “Inspection”. Other errors are found while creating the Simulink model. These
were classified as being found through “Modeling”. The complete list of methods by
which errors are detected is given in Table 4.

Classification Description
Inspection Error found by manual review or inspection of the

specification.
Modeling Error found during the process of creating the Simulink

model.
Simulation Error found while executing the Simulink model.
Analysis Error found through model checking or other analysis of the

Simulink model.

Table 4 - Classifications of Error Detection

The other obviously desirable classification is some notion of the importance, or severity,
of the error. However, this is quite difficult to do in an objective way. For example, is an
error in following documentation standards that requires thousands of hours to correct a
trivial or major error? Is a coding error that could violate a system safety property, but is
found in the first code review and requires only one line of code to be changed, a trivial
or a major error? Unlike the effort in [24], we have decided not to try to classify the
errors discovered in the WM verification effort.

4.3. Analysis Process

During the lifetime of the project, the analysis process underwent significant changes
from the previous analysis effort described in [24]. In that effort, the translation process
was performed by researchers utilizing the Simulink gateway of SCADE to translate into
NuSMV. Feedback was provided to the development group by meeting on a semi-
weekly basis to discuss problems found.

In this project, the process has evolved to where all the analysis is now being done by the
project engineers. This evolution is outlined in Figure 15. The first iteration involved
using SCADE as an intermediate tool to convert between Simulink and our analysis tools.
This conversion process required a significant amount of effort because Simulink
Gateway provided in the SCADE toolset did yet not support the direct translation of
Simulink R14 models. Instead, we would convert R14 models into R13, which could
then be imported into SCADE. Furthermore, SCADE usually required manual

 28

annotations to models in order to successfully import them. This conversion process
required a significant amount of expertise.

To address the difficulties in importing Simulink R14 models through SCADE, Rockwell
Collins and the University of Minnesota developed a Reactis to Lustre translator. Reactis
supports Simulink R14 and a richer subset of Simulink blocks than SCADE, and fits
better into the existing development environment used by product engineers. By
coincidence, the intermediate (MWI) representation of Simulink models used by Reactis
is very similar to Lustre, so the translation to Lustre was very straightforward.

Moving from SCADE to the Reactis to Lustre translator resulted an immediate
improvement in the round-trip analysis time, as it was possible to directly import
Simulink R14 models into our tools. However, our round-trip time was still limited by
whether or not researchers were available to run the tools and explain counterexamples.

Translation Time: 1-4 Hours
Turnaround: 1 Day to 1 Week

Iteration 1

Simulink
R14 Model

Simulink
R13 Model

SCADE
Model

NuSMV
Model

Translation Time: 10 Minutes
Turnaround: 3 Hours to 2 Days

Iteration 2

Simulink
R14 Model

Reactis
Model

NuSMV
Model

Translation Time: 10 Minutes
Turnaround: 10 Minutes

Iteration 3

Simulink
R14 Model

Reactis
Model

NuSMV
Model

Research
Group

(Striped)

Dev.
Group
(Solid)

Figure 15 : Analysis process evolution

The third iteration introduced the most significant milestone in usage of the technology to
date. At this time, system developers were trained in the usage of the translation toolset,
specifying properties, and interpreting counterexamples. The time from error detection to
implementation of a correction was reduced from days to minutes. Previously, delays in
the process were due to inability for groups to meet regularly. In Iteration 3, the delays
are largely due to the time it takes to discover root causes of counterexamples, and to
suggest and implement fixes. This effectively changed the role of researchers from
primary analysts to consultants and allowed the product area teams to use the tools in a
tight-development loop.

 29

4.4. Causes of Errors Found
Many errors were discovered during analysis. Most of these errors can be attributed to
several common causes. A discussion of a few of the more prevalent causes follows.

The most common type cause of error is the improper use of the rising edge detector
block (shown in Figure 16). The function of this block is to detect when a signal goes
from FALSE to TRUE.

Figure 16 : Rising edge detector to detect emergency

Figure 16 illustrates a situation where the improper use of the rising edge block can lead
to undesired system states. Suppose the EMERGENCY condition input becomes TRUE. When
it becomes TRUE, the CHANGE_STATE output is activated. Now suppose the CHANGE_STATE
output is lost or not seen during transmission in the system and subsequently not
processed. A situation now exists where the EMERGENCY condition is still TRUE, but the
CHANGE_STATE input will not be issued again until the EMERGENCY condition is cleared and
re-entered. This could lead to hazardous situations and should be avoided.

Another common cause of error is the lack of requirements to address the occurrence of
multiple events. Some requirements in the system are stated, “When the MODE_X
button is pressed, MODE_X will become active.” This requirement does nothing to
address the situations when more than one button is pressed with the MODE_X button.
Which mode becomes active when the MODE_X button and others are pressed? These
concerns are often not addressed in the written requirements.

A third common source of error involves copy/paste reuse errors where a portion of a
diagram is copied into another subsystem and modified to fit the requirements of the new
subsystem. In this instance, a single error within the original subsystem can be
propagated to several locations leading to many property violations and counterexamples.
Similarly, violations often occur if the copied diagram does not precisely match the
requirements of the new context. Our experience reinforces that this kind of “reuse”
must be done with care.

The last common cause of error, although trivial, is incorrect connection of inputs from
subsystem to subsystem. In large systems, such as the window manager, the connection
of inputs can become quite confusing, and errors can be made. Signals must often be
routed through several subsystem layers to reach the subsystem where they contribute to
the behavior of the model, and each of these layers may be large and complex, so these
errors can be difficult to find using only inspections. However, the model-checker can
quickly find these errors.

 30

5. Conclusions and Directions for Future Work

This report described the large-scale use of formal methods to verify the behavior of
production avionics software. In this effort, we verified the correctness of the majority of
the functional behavior of the ADGS-2100 window manager, analyzing over 16,000
primitive Simulink blocks organized into 4,000 Simulink subsystem instances, against
high-level requirements expressed as 563 temporal logic properties. As a result, 98 errors
in the high-level requirements and Simulink models were found and corrected. This
effort provides a significant example of a successful and cost-efficient application of
formal methods to remove defects early in the design cycle.

Our success was predicated on understanding the needs and development processes of the
systems and software engineers who were building the WM application. We identified
several challenges that had to be solved in order to meet these needs:

• Determining how to map software requirements into formal properties

• Creating translators that would allow commercial modeling tools (such as
Simulink [10]) to be quickly and automatically analyzed by different formal
analysis tools

• Creating tools that allow analysis results (counterexamples) to be easily
understood by the analysts and product engineers

• Defining methods for partitioning the application of interest into subsystems that
can be analyzed individually

• Creating a verification process to ensure that: 1) the analysis results are sound, 2)
all formal properties are traceable to software requirements, and 3) all
requirements of interest are verified through one or more formal properties

• Iterating our verification process with the goal of faster turn-around between
development and analysis to create a more efficient and higher quality process.

By addressing these challenges, we achieved significant buy-in from the WM developers,
and by the end of the project they had assumed responsibility for analyzing the models
and ownership of the safety properties.

Our approach was an extension of the one detailed in [24]. In this effort we focused on
improving the scalability and turnaround time of analysis and the usability of the tools.
The most significant step was the introduction of the new translation path from the
Reactive Systems tool, Reactis, directly to the Lustre specification language. This
contributed considerably to the improvement in time required to correct errors, and cost
reduction.

In the future, we will focus on extending the current technology to include analysis of
systems with real variables and large-domain integers. Although our existing tools have
been very effective in analyzing Boolean and enumerated models, we would like the
capability to be able better address flight-critical systems in which real- and integer-
valued variables play a critical role. We are continuing to add support for a larger

 31

number of Simulink blocks, and plan to support StateFlow [23], a sub-language for
specifying control logic built into Simulink, in the near future.

We also plan to improve several user interface and ease-of-use issues in the current
toolset. One of the most cumbersome steps in the current process involves specifying
and tweaking the valid ranges for integer variables within models. For integer variables
being used as enumerations, the valid ranges of a variable can be derived from the
assignment equation for the variable in the the model. This step would significantly
reduce the set-up time necessary to prepare a model for analysis.

Our eventual goal is to see formal analysis tools used as part of development in the same
way as a compiler or simulation tool. At the end of this project, a developer could
translate an analysis model through our tool chain and analyze it in a matter of minutes.
This quick turnaround allowed developers to integrate model checking into their standard
“build a little, test a little” development cycle. Although our current tool suite does not
yet match our ease-of-use goals, we are at a point where developers can quickly and
easily check large models for critical safety properties, and we are actively working to
improve the tool suite and our analysis process.

References

[1] S. Bensalem, et. al, An Overview of SAL, in Proceedings of LFM 2000: Fifth NASA

Langley Formal Methods Workshop, Editor: C. Michael Holoway, pg. 187-196, Hampton,
VA, June 2000.

[2] G. Berry and G. Gonthier, The Synchronous Programming Language Esterel: Design,
Semantics, and Implementation, Science of Computer Programming, Volume 19, pages 87-
152, 1992.

[3] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R.de Simone, The
Synchronous Languages 12 Years Later, Proceedings of the IEEE, Volume 91, Issue 1,
January 2003.

[4] M. Bozzano, A. Cavallo, M. Cifaldi, L. Valacca, and A. Villafiorita, Improving Safety
Assessment of Complex Systems : An Industrial Case Study. Proceedings of Formal
Methods 2003 (LNCS 2805), Springer-Verlag, pages 208-222, 2003.

[5] M. Bozzano and A. Villafiorita, Improving System Reliability via Model Checking: the
FSAP / NuSMV-SA Safety Analysis Platform, Proceedings of SAFECOMP 2003, pages 49-
62, Edinburgh, Scotland, September 23-26, 2003.

[6] R. Butler, S. Miller, J. Potts, and V. Carreno, A Formal Methods Approach to the Analysis
of Mode Confusion, Proceedings of the 17th AIAA/IEEE Digital Avionics Systems
Conference, Bellevue, WA, October 1998.

[7] J. Chilenski and S. Miller, Applicability of Modified Condition/Decision Coverage to
Software Testing, IEE Software Engineering Journal, Volume 9, Number 5, pg. 193-200,
September 1994.

[8] Y. Choi, M. P.E. Heimdahl, and S. Rayadurgam, Domain reduction abstraction. Technical
Report 02-013. University of Minnesota, April 2002

 32

[9] E. Clarke, O. Grumberg, and P. Peled, Model Checking, The MIT Press, Cambridge,
Massachusetts, 2001.

[10] J. Dabney and T. Harmon, Mastering Simulink, Pearson Prentice Hall: Upper Saddle River,
NJ, 2004.

[11] E. Emerson, Temporal and Modal Logic, Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics, J. van Leeuwen, ed., North-Holland Pub.
Co./MIT Press, Pages 995-1072, 1990.

[12] Esterel Technologies, http://www.esterel-technologies.com.
[13] S. Faulk, J. Brackett, P. Ward, and J. Kirby, Jr, The CoRE Method for Real-Time

Requirements, IEEE Software, 9(5):22-33, September 1992.
[14] FSAP/NuSMV-SA, http://sra.itc.it/tools/FSAP.
[15] D. Harel, Statecharts : A Visual Formalism for Complex Systems, Science of Computer

Programming, 8(3):231-274, June 1987.
[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The Synchronous Dataflow

Programming Language LUSTRE, Proceedings of the IEEE, 79(9): 1305-1320, September
1991.

[17] N. Halbwachs and S. Baghdadi, Synchronous Modeling of Asynchronous Systems,
Proceedings of EMSOFT'02, LNCS 2491, Springer-Verlag, Grenoble, October 2002.

[18] C. Heitmeyer, R. Jeffords., and B. Labaw, Automated Consistency Checking of
Requirements Specification, ACM Transactions on Software Engineering and Methodology
(TOSEM), 5(3):231-261, July 1996.

[19] IRST, The NuSMV Model Checker, http://nusmv.irst.itc.it/.
[20] A. Joshi, S. P. Miller, and M. P. E. Heimdahl, Mode Confusion Analysis of a Flight

Guidance System Using Formal Methods, Proceedings of the 22nd Digital Avionics Systems
Conference (DASC’03), Indianapolis, Indiana, Oct. 12-16, 2003.

[21] N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese, Requirements Specifications for
Process-Control Systems, IEEE Transactions on Software Engineering, 20(9):684-707,
September 1994.

[22] The Mathworks, http://www.mathworks.com.
[23] The Mathworks, Stateflow Home Page, http://www.mathworks.com/products/stateflow/
[24] S. Miller, Elise A. Anderson, Mats P.E. Heimdahl, and Michael W. Whalen, FGS

Autocoding Interim Report, NASA Contractor Report, February 2005
[25] S. Miller, M. P.E. Heimdahl, and A.C. Tribble, Proving the Shalls, Proceedings of FM 2003:

the 12th International FME Symposium, Pisa, Italy, Sept. 8-14, 2003.
[26] S. Miller, A. Tribble, T. Carlson and E. J. Danielson, Flight Guidance System Requirements

Specification, NASA/CR-2003-212426, June 2003.
[27] S. Miller, M. Whalen, D. O’Brien, M. Heimdahl, and A. Joshi, FGS Partitioning Final

Report, NASA Contractor Report, November 2004.
[28] S. Owre, J. Rushby, N. Shankar, and F. Henke, Formal Verification for Fault-Tolerant

Architectures: Prolegomena to the Design of PVS, IEEE Transactions on Software
Engineering, Vol. 21, No. 2, pg. 107-125, February 1995.

[29] Reactive Systems, Inc, Reactis Home Page, http://www.reactive-systems.com.
[30] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi, Defining and translating a

"safe" subset of Simulink/Stateflow into Lustre. 4th ACM International Conference on
Embedded Software (EMSOFT'04), Pisa, Italy, September 2004

[31] SRI, PVS Home Page, http://www.csl.sri.com/projects/pvs/.

 33

[32] SRI, SAL Home Page, http://www.csl.sri.com/projects/sal/.
[33] J. Thompson, M. Heimdahl, and S. Miller.: Specification Based Prototyping for Embedded

Systems, Proceedings of the Seventh ACM SIGSOFT Symposium on the Foundations on
Software Engineering, LNCS 1687, September 1999.

[34] A. C. Tribble, David D. Lempia, and Steven P. Miller, Software Safety Analysis of a Flight
Guidance System, Proceedings of the 21st Digital Avionics Systems Conference (DASC'02),
Irvine, California, Oct. 27-31, 2002.

[35] A. C. Tribble, Steven P. Miller and David L. Lempia, Software Safety Analysis of a Flight
Guidance System , NASA/CR-2004-213004, March 2004.

[36] M. Whalen, A formal semantics for RSML-e. Master's thesis, University of Minnesota, May
2000

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Contractor Report

 4. TITLE AND SUBTITLE

ADGS-2100 Adaptive Display and Guidance System Window Manager
Analysis

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Whalen, Mike W.; Innis, John D.; Miller, Steven P.; and Wagner, Lucas G.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
Langley Technical Monitor: Ricky W. Butler
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 61
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

Recent advances in modeling languages have made it feasible to formally specify and analyze the behavior of large system components.
Synchronous data flow languages, such as Lustre, SCR, and RSML-e are particularly well suited to this task, and commercial versions of
these tools such as SCADE and Simulink are growing in popularity among designers of safety critical systems, largely due to their ability to
automatically generate code from the models. At the same time, advances in formal analysis tools have made it practical to formally verify
important properties of these models to ensure that design defects are identified and corrected early in the lifecycle. This report describes
how these tools have been applied to the ADGS-2100 Adaptive Display and Guidance Window Manager being developed by Rockwell
Collins Inc. This work demonstrates how formal methods can be easily and cost-efficiently used to remove defects early in the design cycle.

15. SUBJECT TERMS
Simulink; Avionics; Formal methods; Model-based development; Model-checking; Synchronous languages; Window
manager

18. NUMBER
 OF
 PAGES

42
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

NCC-1-01001
5e. TASK NUMBER

5f. WORK UNIT NUMBER

23-609866.02.07.07

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2006-213952

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

02 - 200601-

